An n→π* interaction reduces the electrophilicity of the acceptor carbonyl group.

نویسندگان

  • Amit Choudhary
  • Charles G Fry
  • Kimberli J Kamer
  • Ronald T Raines
چکیده

Carbonyl-carbonyl (C=O···C'=O') interactions are ubiquitous in both small and large molecular systems. This interaction involves delocalization of a lone pair (n) of a donor oxygen into the antibonding orbital (π*) of an acceptor carbonyl group. Analyses of high-resolution protein structures suggest that these carbonyl-carbonyl interactions prefer to occur in pairs, that is, one donor per acceptor. Here, the reluctance of the acceptor carbonyl group (C'=O') to engage in more than one n→π* electron delocalization is probed using imidazolidine-based model systems with one acceptor carbonyl group and two equivalent donor carbonyl groups. The data indicate that the electrophilicity of the acceptor carbonyl group is reduced when it engages in n→π* electron delocalization. This diminished electrophilicity discourages a second n→π* interaction with the acceptor carbonyl group.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

n→π* Interactions in the Molecules of Life

Introduction Noncovalent interactions modulate the structure, function, and dynamics of the molecules of life [1]. We have discovered a noncovalent interaction in proteins and nucleic acids, termed the n→π* interaction, in which the lone pair (n) of a donor group (typically a carbonyl oxygen) overlaps with the antibonding orbital (π*) of an acceptor group (typically a carbonyl group) (Figures 1...

متن کامل

A Donor–Acceptor Perspective on Carbonyl–Carbonyl Interactions in Proteins

Electronic delocalization, a central concept in organic chemistry, is being invoked increasingly in biological contexts [1–3]. We have discovered a non-covalent interaction in proteins, termed the n→π* interaction, in which the lone pair (n) of the oxygen (Oi–1) of a peptide bond overlaps with the antibonding orbital (π*) of the carbonyl group (C′i=Oi) of the subsequent peptide bond (Figure 1A,...

متن کامل

n→π* Interactions of Amides and Thioamides: Implications for Protein Stability

Carbonyl-carbonyl interactions between adjacent backbone amides have been implicated in the conformational stability of proteins. By combining experimental and computational approaches, we show that relevant amidic carbonyl groups associate through an n→π* donor-acceptor interaction with an energy of at least 0.27 kcal/mol. The n→π* interaction between two thioamides is 3-fold stronger than bet...

متن کامل

Application of Charge Transfer Complexation Reaction for the Spectroscopy Determination of Anticonvulsant Drug Primidone

The interaction of the perimidone drug in solution state with the σ-acceptor iodine, the aliphatic π-acceptor tetracyanoethylene (TCNE) and the aromatic π-acceptor 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (DDQ) have been studied through the initial formation of ionic intermediate to charge transfer (CT) complex in methanol at room temperature. The spectral studies of the complexes were determi...

متن کامل

Spectrophotometric Study of the Intreaction of some Benzo, Benzyl and Phnylcrown Ethers with Pi-Acceptor DDQ in Chloroform Solution

The interaction between benzo-15-crown-5 (B15C5), dibenzo-18-crown-6 (DB18C6), dibenzyl-daza-18crown-6 (DBzDA18C6), N-phenyl-aza-15-crown-5 (NPhA15C5) and dibenzopyridine-18-crown-6 (DBPy18C6) with π-acceptor 2,3-dichloro-5,6-dicyanobenzoquinone (DDQ) in chloroform solution was studied spectrophotometrically. The interaction of B15C5-DDQ and DB18C6-DDQ caused the formation...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Chemical communications

دوره 49 74  شماره 

صفحات  -

تاریخ انتشار 2013